LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering(710)

Bachelor of Engineering (B.E.) – Semester – III

Course Code:	017103301
Course Name:	Thermodynamics 1
Category of Course:	Professional Core Course (PCC)
Prerequisite Course:	Physics (017101192), Mathematics 1 (017101191)

	Teaching Scheme				
Lectur e (L)	Tutor ial (T)	Pract ical (P)	Cre dit	Tota l Hou rs	
3	1	0	4	40	

Syllabus				
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teac hing Hour s
	Thermal Properties			
	1.1 Basic terms (force, pressure, energy, work, power, internal energy, enthalpy, pure substance)	Work, energy, power (017101192-Unit-1.4)	Enthalpy, specific volume, internal energy and dryness fraction of steam (017103403– Unit-1.2)	4
01	1.2 Heat and work (heat, temperature, sensible heat, latent heat, specific heat, work transfer and its types)	Work, energy, power (017101192-Unit-1.4)	Cyclic heat engine, energy reservoir (017103403– Unit- 4.2)	(10%)
	1.3 Process, path and cycle (Property, state, change of state, path, process, cycle, path and point functions)		First Law of Thermodynamics (017103403– Unit- 2.1, 2.2, 2.3)	
	Basic Concepts of Thermodyna	mics		
	2.1 Microscopic and macroscopic point of view			
	2.2 Thermodynamic systems and control volume			4
02	2.3 Homogeneous and heterogeneous systems			(10%)
	2.4 Thermodynamic equilibrium, Concept of continuum			
	2.5 Quasi-static process	Process, path and cycle (017103301-Unit-1.3)		
	2.6 Statements of zeroth and first law, Temperature scales			

	Derivation and Numerical of Ga	s Laws			
	3.1 Boyle's law and Charles's law				
03	3.2 Gay-Lussac's law and Gas constant			(5.5%)	
	3.3 Combined gas law and relation between specific heats and gas constant	Boyle's law and Charles's law (017103301-Unit-3.1), Surds & Indices (017101191-Unit-1.2)		(,	
	Various Non-flow Processes - W				
	Transfer, Enthalpy and Relation				
	4.1 Constant volume process and constant pressure process	Gay-Lussac's law and Gas constant (017103301- Unit-3.2)	Carnot vapor cycle (017103403– Unit-7.1)		
	4.2 Isothermal process			6	
04	4.3 Adiabatic process and Polytropic process	Expansions and factorization (017101191-Unit-1.3), Basic differentiation by formulae (017101191-Unit-3.1)		(14%)	
	4.4 Index of Compression or Expansion				
	Properties of Gas Mixtures				
	5.1 Avogadro's law and equation of state with numerical				
05	5.2 Vander Waal's equation with numerical and determination of constants a & b			4 (10.5 %)	
	5.3 Reduced properties and law of corresponding states	Vander Waal's equation (017103301-Unit-5.2)			
	5.4 Basic Understanding of Compressibility chart				
	5.5 Statement of Gibbs – Dalton Law				
	Internal Combustion Engines				
	6.1 Classification of I.C. engine				
	6.2 Introduction of Engine Parts with their Functions			3	
06	6.3 Construction and working of Two-stroke I.C. engine	Constant volume process and constant pressure process & Adiabatic process and Polytropic process (017103301-Unit-4.1, 4.3)		(7.5%)	
	Thermodynamic Cycle for I C Engine				
07	7.1 Assumptions of air standard cycles	Constant volume process and constant pressure process (017103301-Unit- 4.1), Combined gas law (017103301-Unit-3.3)		7 (17.5 %)	
	7.2 Carnot gas power cycle	Isothermal process, Adiabatic process and Polytropic process	Second law efficiency (017103403– Unit-		

		(017103301-Unit-4.2, 4.3)	6.5)		
	7.3 Terminology of I.C. engine with numerical (Indicated Power, Brake Power, Friction Power, Mechanical Efficiency, Thermal Efficiency, Relative Efficiency)	Details of I.C. engine (017103301-Unit-6.2)			
	7.4 Construction and working of Four stroke I.C. engine				
	7.5 Air standard efficiency & Mean Effective Pressure of Otto cycle with numerical	Constant volume process and constant pressure process (017103301-Unit- 4.1)			
	7.6 Air standard efficiency of Diesel cycle with numerical	Constant volume process and constant pressure process (017103301-Unit- 4.1)			
	Mixed Cycle				
	8.1 Air standard efficiency of Dual cycle with numerical	Air standard efficiency of Otto cycle, Diesel cycle (017103301-Unit-7.5, 7.6)			
08	8.2 Comparison of Otto, Diesel and Dual cycles (For Same Compression Ratio & For Same Maximum Pressure and Temperature)	3.2 Comparison of Otto, Diesel and Oual cycles (For Same Compression Ratio & For Same Maximum Pressure		4 (10%)	
	8.3 Comparison of SI and CI engines				
	8.4 Comparison of two and four stroke engines	Two-stroke I.C. engine (017103301-Unit-6.3), Four stroke I.C. engine (017103301-Unit-7.4)			
	Joule Cycle				
09	9.1 5 Air standard efficiency of Brayton cycle with numerical	Constant volume process and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas law (017103301-Unit-3.3)		2 (5%)	
	9.2 Comparison of Brayton and Otto cycle				
	Combustion				
	10.1 Combustion equations, stoichiometric air fuel ratio				
	10.2 Calculation of Minimum Air Requirement 10.3 Enthalpy of formation, adiabatic				
10	flame temperature			(100/)	
10	10.4 Construction and Working of Bomb calorimeter	Thermocouples and RTD (017101192-Unit-8.3), Pressure gauges and bourdon tube (017101192-Unit-7.3)		(10%)	
	10.5 Construction and Working of Junker gas calorimeter	Basics of temperature measurement			

(017101192-Unit-8.1), Pressure gauges and bourdon tube (017101192-Unit-7.3)	
(01/101192-Unit-7.3)	

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)

L: 3 T: 1 P: 0

Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject.

Each Test will be of 25 Marks.

Each Test Syllabus Weightage: Range should be 20% - 30%

Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	57%	57
Theory	4		Theory Descriptive (Mainly Programming)	0%	0
Theory			Formulas and Derivation	10%	10
Theory			Numerical	33%	33
Expected Theory %	100%	4	Calculated Theory %	100%	100
Practical			Individual Project	0%	0
Practical	0		Group Project	0%	0
Practical		0		Internal Practical Evaluation (IPE)	0%
Practical			Viva	0%	0
Practical			Seminar	0%	0
Expected Practical %	0%		Calculated Practical %	0%	0
Overall %	100%			100%	100

Cour	Course Outcome		
	Upon completion of the course students will be able to		
1	Narrate the various sources of energy and basic terminology related with thermodynamics along with basic calculations related to gas law.		
2	Recognize various thermodynamic processes & use various gas laws of real gas and their mixture.		
3	Analyze various heat engine cycles and understand construction and working of IC engines.		
4	Characterize combustion equation & learn calorimeter.		
Sugg	ested Reference Books		
1	Engineering Thermodynamics by P.K. Nag, McGraw-Hill Education		
2	Fundamentals of Thermodynamics by Borgnakke, Sonntag, 7th Ed. Wiley India (P) Ltd.		
3	Thermodynamics – An Engineering Approach by Yunus Cengel , Boles, McGraw-Hill Education		
4	Engineering Thermodynamics by Gordon Rogers and Yon Mayhew, Pearson Education Ltd		
5	Engineering Thermodynamics by Krieth, CRC Press		

6	Engineering Thermodynamics by Jones and Dugan, PHI Learning Pvt. Ltd

List	List of Open Source Software/Learning website	
1	http://nptel.ac.in	
2	www.coursera.org	